Phương Trình Bậc 4 Quy Về Bậc 2, Cách Giải Phương Trình Bậc 4

Chuyên đề Toán học lớp 10: Các dạng phương trình quy về phương trình bậc hai được lingocard.vn sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 10 hiệu quả hơn. Mời các bạn tham khảo.

Đang xem: Phương trình bậc 4 quy về bậc 2

I. Lý thuyết & Phương pháp giải

Phương trình trùng phương: ax4 + bx2 + c = 0, (a ≠0) (*)

– Đặt t = x2 ≥ 0 thì (*) ⇔ at2 + bt + c = 0 (**)

– Để xác định số nghiệm của (*), ta dựa vào số nghiệm của (**) và dấu của chúng, cụ thể:

+ Để (*) vô nghiệm ⇔

+ Để (*) có 1 nghiệm

+ Để (*) có 2 nghiệm phân biệt ⇔

+ Để (*) có 3 nghiệm ⇔ (**) có 1 nghiệm bằng 0 và nghiệm còn lại dương.

+ Để (*) có 4 nghiệm ⇔ (**) có 2 nghiệm dương phân biệt.

Một số dạng phương trình bậc bốn quy về bậc hai

Loại 1. ax4 + bx3 + cx2 + dx + e = 0 với e/a =(d/b)2 ≠0

Phương pháp giải: Chia hai vế cho x2 ≠0, rồi đặt t = x + α/x ⇒ t2 = (x + α/x)2 với α = d/b

Loại 2. (x+a)(x+b)(x+c)(x+d) = e với a + c = b + d

Phương pháp giải: <(x+a)(x+c)>⋅<(x+b)(x+d)> = e

= e và đặt t = x2 + (a+c)x

Loại 3. (x+a)(x+b)(x+c)(x+d) = ex2 với a.b = c.d

Phương pháp giải: Đặt t = x2 + ab + ((a+b+c+d)/2)x thì phương trình

⇔ (t + ((a+b-c-d)/2)x)(t – ((a+b-c-d)/2)x) = ex2 (có dạng đẳng cấp)

Loại 4.

Xem thêm: Review Khóa Học Hành Chính Nhân Sự Uy Tín, Khóa Học Quản Trị Hành Chính Nhân Sự

(x+a)4 + (x+b)4 = c

Phương pháp giải: Đặt x = t-(a+b)/2 ⇒ (t + α)4 + (t – α)4 = c với α = (a-b)/2

Loại 5. x4 = ax2 + bx + c (1)

Phương pháp giải: Tạo ra dạng A2 = B2 bằng cách thêm hai vế cho một lượng 2k.x2 + k2, tức phương trình (1) tương đương:

(x2)2 + 2kx2 + k2 = (2k+a)x2 + bx + c + k2 ⇔ (x2 + k)2 = (2k + a)x2 + bx + c + k2

Cần vế phải có dạng bình phương

Loại 6. x4 + ax3 = bx2 + cx + d (2)

Phương pháp giải: Tạo A2 = B2 bằng cách thêm ở vế phải 1 biểu thức để tạo ra dạng bình phương: (x2 + (a/2)x + k)2 = x4 + ax3 + (2k + a2/4)x2 + kax + k2. Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: (2k + a2/4)x2 + kax + k2, thì phương trình

(2)⇔ (x2 + (a/2)x + k)2 = (2k + (a2/4) + b)x2 + (ka + c)x + k2 + d

Lúc này cần số k thỏa:

Lưu ý: Với sự hỗ trợ của casio, ta hoàn toàn có thể giải được phương trình bậc bốn bằng phương pháp tách nhân tử. Tức sử dụng chức năng table của casio để tìm nhân tử bậc hai, sau đó lấy bậc bốn chia cho nhân tử bậc hai, thu được bậc hai. Khi đó bậc bốn được viết lại thành tích của 2 bậc hai

Phân tích phương trình bậc ba bằng Sơ đồ Hoocner

Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

Nguyên tắc nhẩm nghiệm:

+ Nếu tổng các hệ số bằng 0 thì phương trình sẽ có 1 nghiệm x = 1

+ Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có 1 nghiệm x = -1

+ Nếu phương trình chứa tham số, ta sẽ chọn nghiệm x sao cho triệt tiêu đi tham số m và thử lại tính đúng sai

Chia Hoocner: đầu rơi – nhân tới – cộng chéo

II. Ví dụ minh họa

Bài 1: Giải phương trình 2×4 – 5×3 + 6×2 – 5x + 2 = 0

Hướng dẫn:

Ta thấy x = 0 không phải là nghiệm của phương trình nên chia hai vế phương trình cho x2 ta được: 2(x2 + 1/x2) – 5(x + 1/x) + 6 = 0

Đặt t = x + 1/x, ⇒ x2 + 1/x2 = (x + 1/x)2 – 2 = t2 – 2

Ta có phương trình: 2(t2 – 2) – 5t + 6 = 0 ⇔ 2t2 – 5t + 2 = 0 ⇔

+ t = 1/2 ⇒ x + 1/x = 1/2 ⇔ 2×2 – x + 2 = 0 (vô nghiệm)

+ t = 2 ⇒ x + 1/x = 2 ⇔ x2 – 2x + 1 = 0 ⇔ x = 1

Vậy phương trình có nghiệm duy nhất x = 1

Bài 2: Giải phương trình x(x+1)(x+2)(x+3) = 24

Hướng dẫn:

Phương trình tương đương với (x2 + 3x)(x2 + 3x + 2) = 24

Đặt t = x2 + 3x, phương trình trở thành

t(t+2) = 24 ⇔ t2 + 2t – 24 = 0 ⇔

+ t = -6 ⇒ x2 + 3x = -6 ⇔ x2 + 3x + 6 = 0 (Phương trình vô nghiệm)

+ t = 4 ⇒ x2 + 3x = 4 ⇔ x2 + 3x – 4 = 0 ⇔

Vậy phương trình có nghiệm là x = -4 và x = 1

Bài 3: Giải phương trình 4(x+5)(x+6)(x+10)(x+12) = 3×2

Hướng dẫn:

Phương trình tương đương với 4(x2 + 17x + 60)(x2 + 16x + 60) = 3×2 (*)

Ta thấy x = 0 không phải là nghiệm của phương trình.

Xem thêm: Tiểu Luận Về Tứ Niệm Xứ – Chánh Niệm Trên Tứ Niệm Xứ

Xét x ≠0, chia hai vế cho x2 ta có

(*)⇔ 4(x + 17 + 60/x)(x + 16 + 60/x) = 3

Đặt y = x + 16 + 60/x phương trình trở thành

4(y+1)y = 3 ⇔ 4y2 + 4y – 3 = 0 ⇔

Với y = 1/2 ta có x + 16 + 60/x = 1/2 ⇔ 2×2 + 31x + 120 = 0

Với y = -3/2 ta có x + 16 + 60/x = -3/2 ⇔ 2×2 + 35x + 120 = 0

Vậy phương trình có nghiệm là x = -8, x = -15/2 và

Bài 4: Giải phương trình (x+1)4 + (x+3)4 = 2

Hướng dẫn:

Đặt x = t – 2 phương trình trở thành (t-1)4 + (t+1)4 = 2 ⇔ t4 + 6t2 = 0 ⇔ t2(t2 + 6) = 0 ⇔ t = 0

Suy ra x = -2

Vậy phương trình có nghiệm duy nhất x = -2

Bài 5: Giải phương trình

Hướng dẫn:

Điều kiện: x ≠2; x ≠3

Đặt u = (x+1)/(x-2); v = (x-2)/(x-3) ta được u2 + uv = 12v2

⇔(u – 3v)(u + 4v) = 0 ⇔ u = 3v; u = -4v

+) u = 3v ⇔ (x+1)/(x-2) = 3(x-2)/(x-3) ⇔ x2 + 4x + 3 = 3×2 – 12x + 12

⇔2×2 – 16x + 9 = 0 ⇔ x = (8 ± √46)/2

+) u = -4v ⇔ (x+1)/(x-2) = -4(x-2)/(x-3) ⇔ x2 + 4x + 3 = -4×2 + 16x – 16

⇔ 5×2 – 12x + 19 = 0(Vô nghiệm)

Vậy phương trình đã cho có hai nghiệm là x = (8 ± √46)/2

Với nội dung bài Các dạng phương trình quy về phương trình bậc hai trên đây chúng tôi xin giới thiệu tới các bạn học sinh cùng quý thầy cô nội dung cần nắm vững khái niệm, phương pháp giải các dạng phương trình quy về phương trình bậc hai…

Trên đây lingocard.vn đã giới thiệu tới các bạn lý thuyết môn Toán học 10: Các dạng phương trình quy về phương trình bậc hai. Để có kết quả cao hơn trong học tập, lingocard.vn xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 10, Giải bài tập Toán lớp 10, Giải VBT Toán lớp 10 mà lingocard.vn tổng hợp và giới thiệu tới các bạn đọc

Xem thêm bài viết thuộc chuyên mục: Phương trình