Chuyên Đề Giải Hệ Phương Trình Bằng Phương Pháp Thế Violet, Chuyên Đề Về Phương Trình Và Hệ Phương Trình

Một trong những mục tiêu cơ bản của nhà trường là đào tạo và xây dựng thế hệ học sinh trở thành những con người mới phát triển toàn diện, có đầy đủ phẩm chất đạo đức, năng lực, trí tuệ để đáp ứng với yêu cầu thực tế hiện nay. Muốn giải quyết nhiệm vụ quan trọng này, trước hết chúng ta phải tạo tiền đề vững chắc lâu bền trong phương pháp học tập của học sinh, cũng như trong phương pháp giảng dạy của giáo viên các bộ môn nói chung và bộ môn Toán nói riêng.

Toán học là một bộ môn khoa học tự nhiên rất quan trọng, ảnh hưởng rất lớn đến các môn khoa học khác. Một nhà tư tưởng Anh đã nói: “Ai không hiểu biết về Toán học thì không thể hiểu biết bất cứ một khoa học nào khác và cũng không thể phát hiện ra sự dốt nát của bản thân mình.”

Để giúp các em học tập môn Toán có kết quả tốt, có rất nhiều tài liệu, sách báo, giáo viên lâu năm, giáo viên giỏi đề cập tới. Nhưng chung quy lại, giáo viên không chỉ nắm vững kiến thức mà điều cần thiết là phải biết vận dụng các phương pháp giảng dạy một cách linh hoạt, truyền thụ kiến thức cho học sinh đẽ hiểu nhất. Nhà khoa học LEP – NITX đã nói: “Một phương pháp được coi là tốt nếu như ngay từ đầu ta có thể thấy trước và sau đó có thể khẳng định được rằng theo phương pháp đó ta sẽ đạt tới đích “. Với mỗi bài toán ta có thể giải quyết được nó chỉ cần bắt chước theo những chuẩn mực đúng đắn và thường xuyên thực hành.

Chương trình Toán rất rộng, các em lĩnh hội nhiều kiến thức, các kiến thức lại có mối quan hệ chặt chẽ với nhau. Do vậy khi học các em không chỉ nắm chắc kiến thức cơ bản mà còn phải rèn luyện kỹ năng phân tích, tổng hợp, từ đó biết vận dụng vào giải từng bài Toán. Qua cách giải từng bài Toán tự mình rút ra được phương pháp chung để giải mỗi dạng bài, trên cơ sở đó đề xuất lời giải khác hay hơn, ngắn gọn hơn.

Thông qua quá trình giảng dạy môn Toán lớp 9, đồng thời kiểm tra đánh giá kết quả tiếp thu kiến thức của học sinh, tôi nhận thấy các em tiếp thu kiến thức còn rất nhiều hạn chế và thiếu sót. Đặc biệt là các em rất lúng túng khi vận dụng các kiến thức đã học vào giải phương trình cũng như dùng hệ phương trình để làm các bài toán khác. Do vậy việc hướng dẫn học sinh phân loại các dạng hệ phương trình và đề ra các cách giải các dạng đó một phần nó tạo cho các em có một cách nhìn tổng quan hơn về hệ phương trình, mặt khác giúp cho các em rèn luyện phương pháp học Toán có hiệu quả.

Mặc dù thấy được sự cần thiết của vấn đề này, nhưng việc hướng dẫn học sinh tiếp thu phần kiến thức cũng gặp rất nhiều khó khăn, và tôi luôn suy nghĩ phải từng bước để hoàn thiện phương pháp của mình nên bản thân tôi đã dày công nghiên cứu đề tài này với hy vọng đề tài có thể giúp các em học sinh lớp 9 phát triển tư duy, cũng có thể dùng làm tài liệu dạy học môn học tự chọn, chủ đề bám sát. Bên cạnh đó tôi suy nghĩ rằng nếu mỗi năm, một giáo viên tập trung nghiên cứu một vấn đề nào đó và chia sẻ với đồng nghiệp của mình thì chắc chắn hiệu quả giáo dục sẽ được nâng lên rõ rệt.

Từ những suy nghĩ trên đây bản thân tôi quyết tâm nghiên cứu viết đề tài:

“Hướng dẫn học sinh phân loại và giải một số dạng hệ phương trình” đáp ứng được yêu cầu đổi mới SGK lớp 9, qua đó giúp các em có thêm kinh nghiệm tiếp thu kiến thức về giải hệ phương trình cũng như ứng dụng của nó phục vụ cho việc thi HSG, thi vào THPT…

B. GIẢI QUYẾT VẤN ĐỀ

Hệ phương trình là một trong những dạng chuyên đề rất khó, nhưng ứng dụng của nó thì khá nhiều, và thực các em thường cảm thấy lúng túng khi tiếp xúc với loại Toán này. Bởi vậy tôi thấy cần thiết phải tạo cho các em có niềm say mê, yêu thích trong học tập, luôn tự đặt ra những câu hỏi và tự mình tìm ra câu trả lời, khi gặp những bài toán khó phải có nghị lực, tập trung tư tưởng tin vào khả năng của mình trong quá trình học tập.

Việc hướng dẫn học sinh tìm ra phương pháp giải các dạng hệ phương trình là một vấn đề quan trọng, chúng ta phải tích cực quan tâm thường xuyên, không chỉ giúp các em nắm vững lý thuyết mà còn phải tạo cho các em một phương pháp học tập tốt của bản thân, rèn cho các em có thói quen thực hành và kỹ năng nhìn nhận một bài toán sao cho: “Mỗi bài toán tôi giải được đều trở thành kiểu mẫu để sau này giải các bài toán khác”

(ĐÊ – CAC)

I. PHÂN LOẠI HỆ PHƯƠNG TRÌNH.

Trong quá trình dạy học giáo viên cần hướng dẫn học sinh phân loại các dạng hệ phương trình, rồi cùng các em tìm ra phương pháp giải tối ưu cho mỗi dạng đó. Ở trong chương trình lớp 9 các em thường gặp các dạng hệ phương trình như:

1. Hệ hai phương trình bậc nhất hai ẩn,

2. Hệ phương trình phân thức đơn giản,

3. Hệ phương trình gồm một phương trình bậc nhất và một phương trình không phải bậc nhất,

4. Hệ phương trình hai ẩn trong đó vế phải bằng 0 và vế trái phân tích được thành nhân tử,

5. Hệ phương trình đẳng cấp,

6. Hệ phương trình đối xứng loại I,

7. Hệ phương trình đối xứng loại II,

8. Hệ ba phương trình bậc nhất ba ẩn,

9. Hệ hoán vị dạng tổng,

10. Hệ hoán vị dạng tích,

11. Hệ phương trình vô tỷ,

12. Hệ phương trình giải bằng cách đưa về hằng đẳng thức,

13. Hệ phương trình giải bằng cách đưa về tổng các bình phương,

14. Hệ phương trình giải bằng cách dùng bất đẳng thức,

15. Một số bài toán ứng dụng của hệ phương trình.

II. CÁC KIẾN THỨC CẦN NHỚ

Khi bắt tay vào giải bài tập, phần đầu tiên là phải nắm vững lý thuyết cơ bản, có như vậy mới hy vọng giải được bài toán theo yêu cầu. Đối với phần này tôi giúp các em nhớ lại kiến thức bằng cách đưa ra hệ thống câu hỏi trắc nghiệm về: nghiệm tổng quát của phương trình bậc nhất hai ẩn, về số nghiệm của hệ phương trình, về quy tắc thế, quy tắc cộng, về điều kiện nghiệm của phương trình bậc hai một ẩn, công thức nghiệm, hệ thức Vi-et, các phương pháp phân tích đa thức thành nhân tử…

1. Hệ hai phương trình bậc nhất hai ẩn:

– Định nghĩa: Cho hai phương trình bậc nhất hai ẩn: ax + by = c và a’x + b’y = c’. Khi đó ta có hệ hai phương trình bậc nhất hai ẩn:

*

(I)

– Nếu hai phương trình ấy có nghiệm chung (x0; y0) thì (x0; y0) được gọi là nghiệm của hệ (I)

– Nếu hai phương trình ấy không có nghiệm chung thì thì ta nói hệ vô nghiệm.

2. Quan hệ giữa số nghiệm của hệ và đường thẳng biểu diễn tập nghiệm.

Phương trình (1) được biểu diễn bởi đường thẳng d

Phương trình (2) được biểu diễn bởi đường thẳng d’

– Nếu d cắt d’ hệ có nghiệm duy nhất.

– Nếu d song song với d’ thì hệ vô nghiệm.

– Nếu d trùng với d’ thì hệ có vô số nghiệm.

3. Hệ hai phương trình tương đương.

– Hai hệ phương trình được gọi là tương đương với nhau nếu chúng có cùng một tập hợp nghiệm.

– Giải hệ phương trình là đi tìm nghiệm của hệ phương trình đó.

III. NỘI DUNG

Dạng 1: Hệ hai phương trình bậc nhất hai ẩn.

Đang xem: Giải hệ phương trình bằng phương pháp thế violet

a. Giải hệ phương trình bằng phương pháp thế:

a.1. Quy tắc thế: Quy tắc thế dùng để biến đổi một hệ phương trình thành một hệ phương trình mới tương đương.

Bước 1. Từ một phương trình của hệ đã cho ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới chỉ còn một ẩn

Bước 2. Dùng phương trình mới ấy để thay thế cho phương trình thứ hai của hệ (Phương trình thứ nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1)

a.2. Ví dụ minh họa:

Ví dụ 1. Giải hệ phương trình sau:

*

(I)

*

Vậy hệ phương trình có nghiệm là (1; 1).

Đến đây Gv yêu cầu học sinh dùng quy tắc thế rút x từ phương trình (1) rồi giải hệ phương trình.

*

Vậy hệ phương trình có nghiệm là (1; 1). Học sinh nhận xét hai cách giải rồi từ đó Gv yêu cầu học sinh làm tiếp ví dụ.

Ví dụ 2. Giải hệ phương trình sau:

*

(II)

Giải: (II)

*

Vậy hệ phương trình có nghiệm là (2; 3)

Đối với hệ phương trình này Gv đã hướng dẫn học sinh thế cả một biểu thức.

a.3. Lưu ý:

– Khi một trong hai phương trình của hệ có ẩn nào đó có hệ số bằng 1 hoặc -1 thì có thể giải nó bằng phương pháp thế bằng cách rút ẩn có hệ số bằng 1 hay -1 theo ẩn kia.

– Đối với một hệ tương đối phức tạp cần tìm cách thế cả một biểu thức.

a.4. Bài tập áp dụng.

Giải các hệ phương trình sau:

1.

*

2.

*

3.

*

Sau khi đã đưa ra lưu ý Gv yêu cầu học sinh giải hệ phương trình:

Lúc này học sinh sẽ cảm thấy lúng túng bởi không có hệ số nào của cả hai phương trình bằng 1 và -1. Vậy có cách nào giải khác chăng?

b. Giải hệ phương trình bằng phương pháp cộng đại số:

b.1. Quy tắc cộng đại số:

Quy tắc cộng đại sô dùng để biến đổi một hệ phương trình thành một hệ phương trình mới tương đương.

– Bước 1. Cộng hay trừ từng vế hai phương trình của hệ đã cho để được một hệ phương trình mới tương đương.

– Bước 2. Dùng phương trình mới thay thế cho một trong hai phương trình của hệ ( và giữ nguyên phương trình kia)

b.2. Ví dụ minh họa

Ví dụ 1. Giải hệ phương trình sau:

Giải: Cộng từng vế hai phương trình của hệ (I) ta có

*

Vậy hệ phương trình có nghiệm là (2; 1)

Ví dụ 2.

*

Giải: Cộng từng vế hai phương trình của hệ ta có:

*

Hệ có nghiệm là (2; -3)

Ở hai hệ phương trình trên ta nhận thấy hệ số của cùng một ẩn ở hai phương trình đối nhau hoặc bằng nhau thì ta cộng hay trừ vế với vế. Vậy nếu không ở vào trường hợp trên thì sao?

b.3. Lưu ý:

Khi các hệ số của cùng một ẩn đối nhau (hoặc bằng nhau) thì ta cộng (hay trừ) vế với vế của hai phương trình của hệ.

– Khi hệ số của cùng một ẩn ở hai phương trình không bằng nhau cũng không đối nhau thì ta chọn nhân với một số thích hợp để đưa về hệ số của cùng một ẩn đối nhau hoặc bằng nhau.

Giải hệ phương trình:

Giải: Nhân phương trình (1) với 3 rồi trừ phương trình này cho phương trình (2) vế với vế ta có

*

Vậy hệ phương trình có nghiệm (1; 1)

b.4. Bài tập áp dụng:

Giải các phương trình sau:

1.

*

2.

*

3.

*

c. Giải và biện luận hệ phương trình:

c.1.Quy trình giải và biện luận

Bước 1. Tính các định thức:

*

*

(gọi là định thức của hệ)

*

*

(gọi là định thức của x)

*

*

(gọi là định thức của y)

Bước 2. Biện luận

* Nếu

*

thì hệ có nghiệm duy nhất

*

* Nếu D = 0 và

*

hoặc

*

thì hệ phương trình vô nghiệm

* Nếu D = Dx = Dy = 0 thì hệ có vô số nghiệm.

c.2. Ví dụ minh họa

Ví dụ 1. Giải và biện luận hệ phương trình sau:

*

với m là tham số

Ta có D=

*

; Dx =

*

; Dy =

*

D = 0 m = 2; m = – 2

Dx = 0 m = 2; m =

*

Dy = 0 m = 0; m = 2.

Biện luận:

Nếu m 2. D 0 hệ phương trính có nghiệm duy nhất (x; y), trong đó

x =

*

; y =

*

Nếu m = – 2. D = 0; Dx = – 4 Hệ phương trình vô nghiệm.

Nếu m = 2. D=0 và Dx=Dy = 0. Hệ phương trình có vô số nghiệm (x; 2x – 4) x

*

R.

Ví dụ 2. Giải hệ phương trình sau:

*

Giải: D=

*

; Dx =

*

; Dy =

*

D = 0 m = 2; m = -2,

Dx = 0 m = 1; m = 2,

Dy = 0 m = 2; m =

*

Biện luận:

Nếu m 2 thì hệ phương trình có nghiệm duy nhất

Nếu m = -2 hệ vô nghiệm

Nếu m = 2 Hệ vô số nghiệm.

c.3. Lưu ý:

– Đối với bài toán giải và biện luận hệ phương trình bậc nhất hai ẩn thì việc sử dụng định thức là rất hữu hiệu. Có một cách dễ nhớ là: D:anh – bạn; Dx: có – bát; Dy : ăn – cơm.

– Đôi khi có thể sử dụng tính chất: Nếu hệ phương trình

*

có:

*

thì hệ có nghiệm duy nhất

*

thì hệ vô nghiệm

*

thì hệ có vô số nghiệm

Ngoài ra Gv có thể hướng dẫn học sinh chuyển về giải và biện luận phương trình bậc nhất một ẩn.

Chẳng hạn: Đối với hệ phương trình:

*

Từ phương trình 1 ta có y =

*

thay vào phương trình 2 ta được

*

Nếu 4 – m2 = 0 m = 2; m = -2.

Khi m = 2 ta có 0x = 0, phương trình có vô số nghiệm hệ vô số nghiệm

Khi m = -2 ta có 0x = -12, phương trình vô nghiệm hệ vô nghiệm.

Nếu m 2 và m -2 thì hệ có nghiệm duy nhất.

Đến đây chắc chắn học sinh sẽ nhận thấy rằng theo định thức việc biện luận nó sẽ trở nên nhẹ nhàng và đơn giản hơn.

c.4. Bài tập áp dụng.

Giải và biện luận các hệ phương trình sau:

1.

*

; 2.

*

; 3.

*

4.

*

5.

*

6.

*

Tìm điều kiện của m, n để mỗi hệ phương trình sau có nghiệm.

1)

*

2)

*

Dạng 2. Hệ phương trình phân thức đơn giản.

Sau khi giải xong hệ phương trình tìm ra được nghiệm (1; 1) Gv đặt vấn đề, nếu bây giờ ta thay x bởi và thay y bởi ta được một hệ phương trình:

*

ta sẽ giải phương trình này như thế nào?

a. Ví dụ minh họa

Ví dụ 1. Giải hệ phương trình sau:

*

Ta phải chuyển hệ phương trình ban đầu về hệ phương trình dạng 1 bằng cách đặt ẩn phụ Đặt u = ; v =

Hệ (I)

*

Giải hệ phương trình này ta suy ra u =

*

; v =

*

từ đó suy ra nghiệm x, y của hệ phương trình. Còn nếu bây giờ ta thay x bởi và y bởi thì ta có một hệ phương trình mới khó hơn đôi chút!

Ví dụ 2. Giải hệ phương trình:

*

Đặt u = ; v =

( u,v )

(II)

*

giải hệ phương trình này ta có u = 2; v = 0 suy ra x = 1; y = -1

Ví dụ 3. Giải hệ phương trình: (I)

*

Khi gặp hệ này học sinh dễ dàng giải được tương tự như ví dụ 1. Lúc này giáo viên có thể khai thác thêm bài toán. Rõ ràng x và y đều khác 0 nên ta có: (I)

*

học sinh muốn giải được hệ này thì đòi hỏi phải chuyển về hệ phương trình trên. Lại tiếp phân tích bài toán

*
*

Để giải hệ phương trình mới học sinh phải xét trường hợp (x; y) = (0; 0). Rồi đưa về các hệ phương trình trên để giải.

b. Lưu ý:

– Khi đặt ẩn phụ nhớ điều kiện của hệ phương trình.

– Cần nhìn nhận các phương trình để dễ dàng tìm ra ẩn phụ thích hợp.

– Đôi khi cần phải xét nhiều trường hợp có thể xảy ra của một bài toán.

c. Bài tập áp dụng:

Bài 1: Giải các hệ phương trình sau:

*

4)

*

5)

*

6)

*

Bài 2. Giải và biện luận hệ phương trình:

*

Bài 3. Giải các hệ phương trình:

1.

*

; 2.

*

; 3.

*

Bài 4. Giải các phương trình sau:

1.

*

2.

*

3.

*

Dạng 3. Hệ phương trình gồm một phương trình bậc nhất và một phương trình không phải phương trình bậc nhất:

a. Cách giải:

Sử dụng quy tắc thế từ phương trình bậc nhất ta rút một ẩn theo ẩn kia, rồi thế vào phương trình còn lại. Giải phương trình hai tìm nghiệm rồi quay lại tìm nghiệm kia.

b. Ví dụ: Giải các hệ phương trình:

a)

*

b)

*

Giải:

Ví dụ a. Từ phương trình thứ nhất ta có x = 5 – 2y thay vào phương trình thứ hai ta được:

(5 – 2y)2 + 2y2 – 2(5 – 2y).y = 5 Û 25 –20y + 4y2 +2y2 – 10y + 4y2 = 5 Û 10y2 – 30y + 20 = 0 Û y2 – 3y + 2 = 0. Giải phương trình này ta được y = 1; y = 2.

Với y = 1 Þ x = 3; Với y = 2 Þ x = 1.

Vậy hệ phương trình có nghiệm là {(3; 1); (1; 2) }

Ví dụ b. Từ phương trình thứ nhất ta có x = 1 + 2y thay vào phương trình thứ hai ta được: (2y + 1)2 + 14y2 – 1 = 4(2y + 1)y Û 4y2 + 4y + 1 + 14y2 – 1 = 8y2 + 4y Û 10y2 = 0 Û y = 0;

Với y = 0 Þ x = 1.

Có thể giải theo cách khác được không?

Cách 2. Từ phương trình thứ hai của hệ x2 + 14 y2 – 1 = 4. x. y

Û (x – 2y)2 + 10y2 – 1 = 0 Thay phương trình 1 vào phương trình 2 ta có 10y2 = 0 suy ra y = 0 từ đó x = 1

Theo cách giải thứ hai quá trình biến đối nó đơn giản hơn, tuy nhiên nó lại phản ánh khả năng tư duy của mỗi học sinh.

c. Lưu ý:

– Khi thế vào phương trình hai HS phải giải một phương trình bậc hai một ẩn bởi vậy Gv phải giúp học sinh nhớ lại cách giải phương trình bậc hai. Còn ở cách giải thứ hai học sinh phải nắm chắc chắn kỹ năng biến đổi thành hằng đẳng thức.

d. Bài tập áp dụng:

Giải các phương trình sau:

1.

*

; 2.

*

; 3.

*

2. Giải và biện luận hệ phương trình: 1) 2)

Dạng 4. Hệ phương trình hai ẩn trong đó vế phải bằng 0, vế trái phân tích được thành nhân tử.

a. Cách giải

– Phân tích vế trái của phương trình thành nhân tử

– Giải các hệ phương trình mới tạo thành.

b. Ví dụ minh họa.

Ví dụ 1. Giải phương trình sau:

*

Giải:

*

Lúc này học sinh dễ dàng nhận thấy rằng các hệ phương trình trên thuộc vào dạng thứ ba. Giải từng hệ phương trình trên ta có nghiệm của hệ phương trình là:

*

Ví dụ 2: Giải hệ phương trình sau:

*

Giải: HPT

*

Ta có 4 hệ phương trình sau mà các hệ phương trình nhận được đều thuộc vào hệ phương trình dạng 1.

*
*
*
*

Giải từng hệ phương trình ta suy ra nghiệm của hệ ban đầu.

c. Bài tập áp dụng.

Giải các hệ phương trình sau:

1)

*

2)

*

3)

*

Dạng 5. Hệ phương trình đẳng cấp

* Hệ phương trình đẳng cấp bậc hai.

Xem thêm: Hướng Dẫn Cách Kết Nối Máy Tính Với Loa Bluetooth, Kết Nối Bluetooth Cho Pc: Những Điều Cần Biết

a. Định nghĩa: Hệ phương trình đẳng cấp bậc hai là hệ phương trình có dạng

*

b. Cách giải:

Đặt ẩn phụ Hoặc

*

. Giả sử ta chọn cách đặt .

Khi đó ta có thể tiến hành cách giải như sau:

Bước 1: Kiểm tra xem (x; 0) có phải là nghiệm của phương trình hay không?

Bước 2: Với y 0 ta đặt x = t.y. Thay vào hệ ta được hệ mới chứa hai ẩn t, y. Từ hai phương trình ta khử y để được một phương trình ẩn t.

Bước 3: Giải phương trình tìm t rồi suy ra nghiệm x, y.

c. Ví dụ minh hoạ.

Ví dụ 1: Giải hệ phương trình sau:

*

Giải: Với y = 0 thay vào hai phương trình ta được

*

Hệ phương trình vô nghiệm.

với y 0 đặt x = t.y thay vào hai phương trình của hệ ta có:

*

Û

*

khử y ở hai phương trình ta có t = 1; t = – 1

Với t = 1, ta có y2 = 1 suy ra y = 1, x = 1; y = – 1, x = -1.

Với t = – 1, ta có 3y2 = 1 suy ra y = , x = ; y = , x =

Vậy hệ phương trình đã cho có bốn nghiệm.

Ví dụ 2: Cho hệ phương trình:

*

a. Giải hệ phương trình với m = 0

b. Với những giá trị nào của m thì hệ có nghiệm.

Giải: a. Giải hệ phương trình khi m = 0

Ta có (I)

*

Ta thấy x = 0; y = 0 không thoả mãn hệ phương trình (I) nên không là nghiệm của (I)

Đặt y = tx, ta có: (I)

*

Lấy (2) chia (3) ta được:

*

Do đó:

* Khi t = 2 x2 =1

*

* Khi t =

*

x2 =

*
*

Vậy hệ phương trình có bốn nghiệm.

b. Giá trị của m để hệ có nghiệm.

Đặt 17 + m = n ta có

*

như câu a. ta đặt y = tx ta được hệ phương trình:

*

Lấy (4) chia (5) ta có

*

(n – 33)t2 + 2(n – 11)t + 3n – 11 = 0 (6)

* Khi n – 33 = 0; (6) có nghiệm t = -2

* Khi n 33 (6) có nghiệm khi D” n2 – 44n +121 0

*

từ đó suy ra giá trị của m cần tìm.

d. Bài tập áp dụng.

Giải các hệ phương trình sau:

1)

*

2)

*

3)

*

4)

*

5)

*

6)

*

* Hệ phương trình đẳng cấp bậc ba.

a. Định nghĩa: Hệ phương trình đẳng cấp bậc ba là hệ phương trình có dạng:

*

b. Cách giải:

Tương tự như cách giải hệ phương trình đẳng cấp bậc hai.

Trước hết ta xét x hoặc y bằng 0.

Khi y 0, đặt x = ty thay vào hệ phương trình rồi khử y. Giải phương trình ẩn t từ đó suy ra nghiệm x, y của hệ phương trình.

c. Ví dụ minh hoạ.

Ví dụ 1. Giải hệ phương trình:

*

Giải: Ta có

*

Từ hệ phương trình ta thấy y 0; x ; x+y>0.

Chia (2) cho (1) vế theo vế ta có:

*

. Đặt x = ty thì t ;

x . Do đó (3)

*

5

*

(t + 1)(2t2 – 5t + 2) = 0 (2t2 – 5t + 2) = 0 do t Suy ra t = hay t = 2

* Khi t = mà x = ty nên y = 2x. 3x(x2 + 4×2) =15 15×3 =15 x = 1;y = 2

* Khi t = 2 mà x = ty nên x = 2y. 3y(y2 + 4y2) = 15 15y3 =15 x =2; y = 1 Vậy hệ có hai nghiệm (1; 2) và (2; 1).

d. Bài tập áp dụng.

Giải các phương trình sau:

1)

*

2)

*

3)

*

Dạng 6. Hệ phương trình đối xứng loại I

a. Định nghĩa: Nếu là hệ phương trình chứa hai ẩn x, y mà khi ta thay đổi vai trò x, y cho nhau thì hệ phương trình không thay đổi gọi là hệ phương trình đối xứng loại I.

b. Cách giải.

Bước 1. Đặt x + y = S và xy = P với ta đưa hệ về hệ mới chứa hai ẩn S,P.

Bước 2. Giải hệ phương trình S, P. Chọn S, P thoả mãn .

Bước 3. Với S,P tìm được thì x,y là nghiệm của phương trình:

*

(Định lý Vi – et đảo).

Do tính đối xứng cho nên nếu (x0;y0) là nghiệm của hệ thì (y0;x0) cũng là nhiệm của hệ phương trình.

c. Ví dụ minh hoạ.

Ví dụ 1.

Xem thêm: Mẫu Nhà Cấp 4 Diện Tích 8X12M Kinh Phí Xây Dựng Thấp, ThiếT Kế MẫU Nhà CấP 4 MáI TháI ĐẹP 8X12M

Giải hệ phương trình:

*

Ta nhận thấy rằng nếu thay đổi vị trí của x và y cho nhau thì hệ phương trình không thay đổi bởi vậy chúng ta đặt ẩn phụ S, P

Đặt ẩn phụ

*

thì nhận được hệ phương trình:

*

Hệ phương trình mới này thuộc vào dạng 3. Từ (1) ta có P = 11 – S, thay vào (2) ta được S2 – 2(11 – S) + 3S = 28, hay S2 + 5S – 50 = 0. Phương trình này có hai nghiệm S = 5 hoặc S = -10

Nếu S = 5 thì P = 6 thoả mãn nên x, y là nghiệm của phương trình T2 – 5T + 6 = 0 Û (T – 2)(T – 3) = 0, suy ra (x, y) = (2; 3) hay (x, y) = (3; 2)

Nếu S = -10 thì P = 21 thoả mãn nên x, y là nghiệm của phương trình T2 + 10T + 21 = 0 Û (T + 3)(T + 7) = 0, suy ra (x, y) = (-3; -7) hay (x, y) = (-7; -3).

Vậy hệ phương trình đã cho có bốn nghiệm là: (x; y) Î

*

Ví dụ 2. Cho hệ phương trình:

*

Xác định m để hệ có ít nhất nghiệm thoả mãn x > 0; y > 0.

Giải: Đặt S = x + y; P = xy. Ta có hệ:

*

Û

*

– Với S = m; p = 1 ta có x, y là nghiệm của phương trình X2 – mX + 1 = 0

Hệ có ít nhất nghiệm x > 0, y > 0 Û

*

– Với S = 1, P = m ta có x, y là nghiệm của phương trình X2 – X + m = 0

Hệ có ít nhất nghiệm x > 0, y > 0 Û

*

Vậy giá trị m cần tìm là: 0

*

hoặc m 2. Đến đây chúng ta có thể nói rằng: học sinh đã được vận dụng khá nhiều kiến thức để giải quyết các bài toán trên. Đôi khi chúng ta phải đặt ẩn phụ bởi một biểu thức chứ không phải một hai ẩn như các ví dụ trên. Chẳng hạn

Ví dụ 3.Với giá trị nào của m thì hệ phương trình sau có nghiệm:

*

Giải: Hệ phương trình Û

*

Bây giờ ta đặt a =

*

và b =

*

(a 0; b ) HPT Û

*

Bài toán chuyển về tương tự như ví dụ 2. Học sinh dễ dàng tìm ra lời giải.

d. Bài tập áp dụng.

Bài tập 1: Giải các phương trình sau:

1)

*

2)

*

3)

*

4)

*

5)

*

6)

*

7)

*

8)

*

Kết quả:

1) (0;2); (2;0) 2)

*

3)

*

4)

*

5)

*

6)

*

7) (4;4) 8)

*

Bài tập 2. Với giá trị nào của m thì hệ phương trình sau có nghiệm:

*

Dạng 7. Hệ phương trình đối xứng loại II:

a. Định nghĩa: Nếu là hệ phương trình hai ẩn x, y mà khi thay đổi vai trò x, y cho nhau thì phương trình này trở thành phương trình kia của hệ.

b. Cách giải

· Trừ vế với vế hai phương trình cho nhau và biến đổi phương trình về dạng tích.

· Kết hợp với một trong hai phương trình của hệ để tạo thành hệ phương trình mới. Giải hệ phương trình mới rồi suy ra nghiệm của hệ ban đầu.

c. Ví dụ minh hoạ:

Ví dụ 1: Giải hệ phương trình sau:

*

Giải: Lấy phương trình thứ nhất trừ đi phương trình thứ hai ta có hệ phương trình:

*

Û

*

Giải hệ phương trình (I) ta có x = 0, y = 0; x = y =2 + ; x = y = 2 –

Hệ phương trinh (II) vô nghiệm.

Ví dụ 2: Cho hệ phương trình

*

a. Giải hệ phương trình khi m = 0

b. Xác định m để hệ có nghiệm duy nhất. Tìm nghiệm duy nhất đó

Giải: Lấy (1) trừ đi (2) vế theo vế ta có: y2 – x2 = 0 y = x hay y = -x

Hệ phương trình đã cho tương đương với hai hệ phương trình:

Xem thêm bài viết thuộc chuyên mục: Phương trình