Đồ Án Thiết Kế Mạch Điều Khiển Nghịch Lưu Nguồn Áp 3 Pha, Thiết Kế Mạch Nghịch Lưu Chọn Lọc

Đang xem: đồ án thiết kế mạch điều khiển nghịch lưu nguồn áp 3 pha

*

Bạn đang xem nội dung tài liệu Đồ án Thiết kế bộ nghịch lưu độc lập nguồn áp với tần số ra thay đổi, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề số 23“ Thiết kế bộ nghịch lưu độc lập nguồn áp với tần số ra thay đổi ” với các thông số sau:U vàoU raI raf220V127V20A40 à 400 HzMục LụcLời nói đầuChương 1. Phân tích lựa chọn phương ánI. Phân tích yêu cầu công nghệII. Lựa chọn phương ánChương 2. Tính toán mạch động lựcI. Tính toán bộ nghịch lưuII. Tính toán bộ biến đổi DC-DC III. Tính toán mạch bảo vệ van bán dẫnChương 3. Mô phỏng bộ biến đổiChương 4. Thiết kế mạch điều khiểnI. Phần cứngII. Lập trình điều khiển phát xungIII. Mạch nguồn cung cấp cho vi điều khiển và IGBT driverTài liệu tham khảo1227881012131515162021Lời nói đầu Điện tử công suất còn có tên gọi là “Kỹ thuật biến đổi điện năng” là một ngành kỹ thuật điện tử nghiên cứu ứng dụng các phần tử bán dẫn trong các bộ biến đổi để không chế biến đổi nguồn năng lượng điện. Điện tử công suất được ứng dụng rộng rãi trong hầu hết các ngành công nghiệp hiện đại. Có thể kể đến các ngành kỹ thuật mà trong đó có những ứng dụng tiêu biểu của các bộ biến đổi bán dẫn công suất như : truyền động điện, giao thông đường sắt, nấu luyện thép, gia nhiệt cảm ứng, điện phân nhôm từ quặng mỏ,các quá trình điện phân trong công nghiệp hóa chất, trong rất nhiều các thiết bị công nghiệp và dân dụng khác nhau… Trong những năm gần đây công nghệ chế tạo các phần tử bán dẫn công suất đã có những tiến bộ vượt bậc và ngày càng trở nên hoàn thiện dẫn đến việc chế tạo các bộ biến dổi ngày càng nhỏ gọn, nhiều tính năng và sử dụng ngày càng dễ dàng hơn. Trong các bộ biến đổi điện tử công suất không thể không nhắc đến các bộ nghịch lưu điện áp. Các bộ biến đổi này ngày càng được ứng dụng rộng rãi đặc biệt trong lĩnh vực điều khiển động cơ, tiết kiệm năng lượng. Đây cũng chính là đề tài của đồ án này: “ Thiết kế bộ nghịch lưu độc lập nguồn áp với tần số ra thay đổi ” Bản báo cáo của em gồm 4 chương lớn:Chương 1:Phân tích lựa chọn phương ánChương 2:Tính toán mạch động lựcChương 3:Mô phỏng bộ biến đổiChương 4:Thiết kế mạch điều khiển Em xin chân thành cảm ơn thầy Trần Trọng Minh cùng các thầy cô giáo bộ môn Tự đông hóa đã hướng dẫn em hoàn thành đồ án này. Trong quá trình làm đồ án, do lần đầu tiếp cận với đồ án, chúng em không tránh khỏi những sai sót, em rất mong được các thầy cô chỉ bảo thêm. Hà Nội, tháng 5 năm 2008 Sinh viên Vũ Đức TânChương 1 Phân tích lựa chọn phương ánI. Phân tích yêu cầu công nghệ 1. Khái niệm chung về Nghịch lưu độc lập (NLĐL) Nghịch lưu độc lập là thiết bị biến đổi nguồn điện một chiều thành xoay chiều (còn gọi là bộ biến đổi DC-AC) có tần số ra có thể thay đổi được và làm việc với phụ tải độc lập. Nhiều loại phụ tải xoay chiều yêu cầu nguồn cung cấp có các tham số như điện áp, tần số có thể thay đổi được trong một phạm vi rộng. Trong thực tế, các bộ biến tần được hợp thành bởi các bộ chỉnh lưu và nghịch lưu độc lập để biến nguồn điện có các thông số không thay đổi được thành nguồn điện có các thông số thay đổi được, đáp ứng mọi yêu cầu của phụ tải. NLĐL được phân loại thành :NLĐL nguồn áp.NLĐL nguồn dòng.NL cộng hưởng. 2. Nghịch lưu độc lập nguồn dòng Sử dụng một nguồn điện với nội trở vô cùng lớn, dòng điện ra là không đổi, không phụ thuộc vào tính chất của phụ tải. Nghịch lưu độc lập nguồn dòng gồm có: NLĐL nguồn dòng song song một pha. NLĐL nguồn dòng ba pha. 3. Nghịch lưu độc lập nguồn áp NLĐL nguồn áp sử dụng các van bán dẫn điều khiển hoàn toàn như IGBT, GTO, MOSFET, BJT do công nghệ chế tạo các phần tử này đã hoàn chỉnh hơn rất nhiều. Ở đây chúng ta có NL nguồn áp 1 pha, 3 pha. 3.1 Nghịch lưu độc lập nguồn áp một pha Sơ đồ gồm 4 van điều khiển hoàn toàn V1, V2, V3, V4 và các điôt ngược D1, D2, D3, D4. Các điôt ngược là bắt buộc phải có trong sơ đồ NLĐL nguồn áp, giúp cho quá trình trao đổi công suất phản kháng với nguồn. Nguồn cung cấp là nguồn áp với đặc trưng là tụ Co có giá trị đủ lớn, có 2 vai trò:San bằng điện áp khi nguồn đầu vào E là một chỉnh lưu.Trao đổi công suất phản kháng với tải qua các điôt ngược.Hình 1. Mạch NLĐL nguồn điện áp một pha Nếu không có tụ Co, hoặc tụ Co quá nhỏ sẽ không có đường chạy cho dòng phản kháng dẫn đến quá điện áp trên các phần tử trong sơ đồ. 3.2 Ngịch lưu độc lập nguồn áp ba pha Sơ đồ gồm sáu van IGBT V1, V2, V3, V4, V5, V6 và sáu điôt ngược D1, D2, D3, D4, D5, D6. Tương tự như NLĐL nguồn điện áp một pha, các điôt ngược có vai trò giúp cho quá trình trao đổi công suất phản kháng giữa tải và nguồn. Hình 2. Mạch NLĐL nguồn điện áp cầu 3 pha Đầu vào một chiều là nguồn áp với tụ C đủ lớn. Có thể dùng thêm bộ DC-DC để có điện áp vào mong muốn. Phụ tải Za=Zb=Zc đấu Y hoặc ∆.4.

Xem thêm: (Ppt) Báo Cáo Đồ Án Băng Tải Plc 「1595_8023」, (Ppt) Báo Cáo Đồ Án Plc

Xem thêm: Bản Vẽ Đồ Án Bê Tông Cốt Thép 2 ~ Hau, Đồ Án Bê Tông Cốt Thép 2

Các phương pháp điều khiển cho NLĐL nguồn áp 3 pha 4.1 PWM (Pulse Width Modulation) Phương pháp PWM thường được sử dụng, đảm bảo điện áp ra có dạng hình sin. Để dạng điện áp ra không phụ thuộc vào phụ tải ngưởi ta thường sử dụng biến điệu bề rộng xung hai cực tính, mỗi pha của sơ đồ có thể điều khiển độc lập với nhau. Cặp van trong mỗi pha được điều khiển ngược nhau(V1 và V4, V3 và V6, V5 và V2). Máy phát sin chuẩn(SinA, SinB,SinC)Máy phát xung răng cưaHình 3. Sơ đồ khối điều khiển PWMTín hiệu sin chuẩn so sánh với tín hiệu răng cưa qua mạch so sánh có ngưỡng. Tín hiệu điều khiển trong mỗi chu kỳ xung răng cưa Ts đối xứng theo mỗi nửa chu kỳ Ts/2.Hình 4. Đồ thị xung điều khiển vào V3,V1,V5 Khó khăn nhất trong phương pháp PWM đó là phải có 3 sóng hình sin chuẩn có biên độ chính xác bằng nhau và lệch pha nhau chính xác là 120° trong toàn bộ dải điều chỉnh. Điều này rất khó đảm bảo bằng các mạch tương tự.4.2 SVM (Space Vector Modulation) Phương pháp điều chế vector không gian đang ngày càng được sử dụng rộng rãi. Đây là phương pháp biến điệu hoàn toản sử dụng kĩ thuật số, có độ chính xác cao, dễ dàng thực hiện trên các bộ xử lý tín hiệu số DSP, ví dụ như dsPic. 4.2.1 Cơ bản về vector không gian Một hệ thống điện áp hay dòng điện 3 pha gồm ba thành phần (uA, uB, uC) hay (iA, iB, iC) có thể được biểu diễn bởi một vector trên mặt phẳng tọa độ 0αβ như sau : Trong đó : ( j là đơn vị số phức ảo ) và u được gọi là vector không gian. Hình 5. Điện áp các pha Giả sử là một hệ thống điện áp ba pha : à Như vậy, trên mặt phẳng tọa độ 0αβ, u là một vector có độ dài bằng độ dài của điện áp pha và quay quanh gốc tọa độ với vận tốc góc bằng . 4.2.2 Trạng thái của van và các vector biên chuẩn Đối với hệ sơ đồ NL áp ba pha, điện áp trên tải là hệ thống ba pha đối xứng ( hình 5). Sử dụng khái niệm trên, ta có thể mô tả hệ thống điện áp bởi vector không gian u ứng với mỗi 1/6 chu kì điện áp ra. Xét khoảng từ , có ba van dẫn là 1, 6, 2 và điện áp trên các van được mô tả bởi vector u1 có độ lớn 2E/3. Ứng với u1 ta có : Tương tự như vậy ta có 6 vector u1,u2 ,u3 ,u4 ,u5 ,u6 mô tả điện áp ba pha đối xứng. Vị trí và giá trị các vector này xác định:Giá trị điện áp tức thời trong các van.Luật đóng mở các van. Trong đó, luật đóng mở van phải đảm bảo:Không được ngắn mạch nguồn một chiều đầu vào vì nếu đầu vào bị ngắn mạch sẽ sinh ra dòng lớn, phá hủy van.Không được hở mạch bất cứ pha nào đầu ra. Để đáp ứng được yêu cầu trên thì chỉ có 8 trạng thái của van, được biểu diễn như bảng:STTVan dẪnUAUBUCU0V4, V6, V2000u0=01V6, V2, V12E/3-E/3-E/3u1=2V1, V2, V3E/3E/3-2E/3u2=3V2, V3, V4-E/32E/3-E/3u3=4V3, V4, V5-2E/3E/3E/3u4=5V4, V5, V6-E/3-E/32E/3u5=6V5, V6, V1E/3-2E/3E/3u6=7V1, V3, V5000u7=0Các vector ui với i=1,2…6 được gọi là các vector biên chuẩn, có hướng cố định trong mặt phẳng, lệch nhau một góc 60o. Các vector này được biểu diễn trên hệ tọa độ 0αβ tạo thành một lục giác đều, chia mặt phẳng thành 6 góc bằng nhau, đánh số từ I cho đến VI (hình 6). 4.2.3 Tổng hợp vector điện áp từ các vector biên chuẩn Độ dài của các vector biên chuẩn được xác định dựa vào giá trị điện áp một chiều đầu vào : . Gọi u là vector điện áp ra mong muốn, có độ dài . Hình 6. Các sector và vector biên chuẩn Xét khi vector không gian u nằm trong góc phần sáu số I. Theo quy tắc hình bình hành, ta có thể tổng hợp u từ hai vector biên u1, u2 :u = up + uttrong đó up, ut là hai vector phải và trái, lần lượt nằm dọc theo hai vector biên u1 và u2. Độ dài vector phải, trái được tính như sau : (1)θ là góc chỉ vị trí tương đối của vector u trong góc phần sáu. Bản chất của phép điều chế vector không gian là tạo ra các vector up, ut trong mỗi chu kì tính toán, hay còn gọi là mỗi chu kì cắt mẫu Ts. Độ dài các vector này được xác định bởi giá trị trung bình theo thời gian tồn tại của các vector u1, u2 trong mỗi chu kì Ts : (2) Từ (1) & (2) ta có công thức tính toán giá trị thời gian điều chế : (3) Đặt : hệ số biến điệu. Do u chỉ quay giới hạn trong đường tròn nội tiếp lục giác đều trên nên ta có: . Khi đó biểu thức (3) trở thành : Trong khoảng thời gian còn lại trong chu kì cắt mẫu, , ta phải đặt vector không uo hay u7 ứng với trạng thái điện áp ra bằng 0. Mặt khác, để điện áp ra ít bị méo thì T0/7 được chia làm đôi và đặt vào đầu và cuối của Ts. 4.2.4 Thuật toán điều chế vector không gian Ta có thể tóm tắt thuật toán điều chế vector không gian gồm các bước sau :Lượng đặt ra là lượng điện áp ra mong muốn, có thể cho dưới dạng tọa độ cực , hoặc dưới dạng tọa độ vuông góc .Xác định vector u đang thuộc sector nào trong sau sector.Lựa chọn hai vector biên chuẩn ứng với sector đó và vector không theo bảng sau để đảm bảo số lần chuyển mạch xảy ra giữa các van là ít nhất :SectorVectorIIIIIIIVVVIuputTính toán các thời gian sử dụng các vector biên. 4.2.5 Đặc điểm của phương pháp điều chế vector không gian SVM:Khác với phương pháp PWM kinh điển, SVM không dùng các bộ điều chế riêng biệt cho từng pha mà tổng hợp vector u tính chung cho cả ba pha.Sử dụng các thiết bị điều khiển bởi vi xử lý, phương pháp SVM có thể áp đặt chính xác các vector phải, trái, từ đó tính được tp, tt trong mỗi chu kì cắt mẫu Ts.Xung tam giác dùng so sánh có dạng đối xứng nên xung điều khiển cũng đối xứng, giảm được một số thành phần sóng hài bậc cao.Điện áp dây của đầu ra mạch nghịch lưu lớn nhất bằng E trong khi phương pháp PWM chỉ đạt chưa tới 90% E. Ưu điểm này rất có lợi trong thiết kế bộ điều khiển động cơ vì lúc đó dòng điện giảm đi, với cùng một công suất.5.Yêu cầu đối với bộ nghịch lưu nguồn áp 3 pha Bộ nghịch lưu nguồn áp với tần số ra biến đổi 3 pha phải thỏa mãn những yêu cầu sau:Đảm bảo cho dạng dòng điện ra trên tải hình sin.Điều chỉnh vô cấp được tần số của điện áp ra trên tải.An toàn đối với người vận hành cũng như các phần tử của mạch khi gặp sự cố.Chi phí thiết kế vận hành thấp.II. Lựa chọn phương án 1. Lựa chọn phương án mạch lựcTrong đồ án này sẽ trình bày chi tiết về Nghịch lưu độc lập nguồn áp ba pha, nó được ứng dụng rộng rãi trong công nghiệp như chế tạo bộ biến tần, điều khiển tốc độ động cơ, tiết kiệm năng lượng… 2. Lựa chọn phương án mạch điều khiển Vì những ưu điểm đã trình bày ở trên nên sẽ sử dụng phương pháp điều chế vectơ không gian SVM trong đồ án này. Đây là một phương pháp tiên tiến, ngày càng được sử dụng nhiều, tính chính xác cao do sử dụng kỹ thuật số. Trong các phần sau sẽ trình bày cụ thể hơn về mạch lực và mạch điều khiển cho nghịch lưu điện áp với tần số ra thay đổi. Chương II: Tính toán mạch động lựcI. Tính toán bộ nghịch lưuHình 7. Sơ đồ mạch NLĐL nguồn điện áp 3 phaSử dụng hình thức làm mát van tự nhiên:+ hệ số dự trữ dòng điện: .+ hệ số dự trữ điện áp: .1. Tính toán chọn van IGBT*) Điện áp lớn nhất đặt lên van: (V).Xét tại thời điểm van mở, van dẫn:Cực C của nối với cực dương của nguồn Van thông nối cực E của với cực âm của nguồn Như vậy điện áp lớn nhất đặt lên các van IGBT là: Hình 8. V1 khóa, V4 thôngTrong đó q là hệ số biến điệu. (0 Các file đính kèm theo tài liệu này: